Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.655
Filtrar
1.
Adv Biol (Weinh) ; 8(1): e2300060, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821359

RESUMO

Prostate cancer (PC) is a prevalent malignancy in males, characterized by high morbidity and mortality. Despite MLC1 being established as a key mediator in tumor progression, its role in PC remains unexplored. This study aims to validate MLC1's anti-tumor effects and uncover potential mechanisms. MLC1's clinical significance is assessed using data from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. MLC1 expression is significantly reduced in PC samples compared with the adjacent normal tissues. MLC1 expression correlates negatively with tumor metastasis and positively with the survival of patients with PC. In vitro, up-regulating MLC1 effectively inhibits tumor progression by curtailing proliferation, infestation, and migration through the deactivation of the PI3K/AKT signaling pathway. Conversely, down-regulating MLC1 promotes PC progression, a phenomenon alleviated by the PI3K/AKT inhibitor, Gefitinib. Furthermore, the anti-tumor function of MLC1 is corroborated by a reduction in tumor volume compared with the negative control in vivo. This study confirms the anti-tumor effects of MLC1 via in vitro and in vivo experiments, demonstrating its potential mechanism of inhibiting the PI3K/AKT signaling pathway.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas de Membrana/farmacologia
2.
Sci Rep ; 13(1): 19251, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935755

RESUMO

Recent studies have shown that the health benefits of probiotics are not limited to those offered by living bacteria. It was reported that both live and killed cells of Propionibacterium freudenreichii MJ2 (MJ2) isolated from raw milk showed antiobesity activity in 3T3-L1 cells and high-fat diet-induced obese mice. This study was aimed at identifying the active component(s) responsible for the antiadipogenic activity of MJ2. Cell wall, surface protein, and cytoplasmic fractions of MJ2 were investigated for their inhibitory effects on adipogenesis in 3T3-L1 cells. Adipocytes treated with the surface protein fraction showed significantly lower lipid accumulation. Using the MASCOT algorithm following LC-MS/MS analysis, 131 surface proteins were identified and they were principally classified into three categories (network clusters related to ribosomes, carbon metabolism, and chaperones). Among them, chaperonin 60 (Cpn60) was selected as a potential candidate protein. Cpn60 inhibited lipid accumulation and adipogenesis during the early period of differentiation (days 0-2) and decreased expression of genes related to adipogenesis (Pparg and Cebpa) and lipogenesis (Fas and Scd1). The expression of Gata2/3, which suppresses adipogenesis, significantly increased in Cpn60-treated cells. Moreover, the nuclear translocation of C/EBPß was inhibited by Cpn60 treatment. In conclusion, Cpn60, a surface protein in MJ2, shows antiadipogenic activity by reducing the expression of C/EBPß through the upregulation of Gata2/3 expression followed by downregulation of Pparg and Cebpa expression.


Assuntos
Adipogenia , Propionibacterium freudenreichii , Camundongos , Animais , Adipogenia/genética , PPAR gama/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Chaperonina 60/farmacologia , Obesidade/metabolismo , Cromatografia Líquida , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Diferenciação Celular , Proteína beta Intensificadora de Ligação a CCAAT , Triglicerídeos/farmacologia , Proteínas de Membrana/farmacologia , Células 3T3-L1
3.
Cell Death Dis ; 14(8): 508, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550282

RESUMO

Cervical cancer is one of the leading causes of cancer death in women. Mitochondrial-mediated ferroptosis (MMF) is a recently discovered form of cancer cell death. However, the role and the underlying mechanism of MMF in cervical cancer remain elusive. Here, using an unbiased screening for mitochondrial transmembrane candidates, we identified mitochondrial carrier 1 (MTCH1) as a central mediator of MMF in cervical cancers. MTCH1-deficiency disrupted mitochondrial oxidative phosphorylation while elevated mitochondrial reactive oxygen species (ROS) by decreasing NAD+ levels. This mitochondrial autonomous event initiated a mitochondria-to-nucleus retrograde signaling involving reduced FoxO1 nuclear translocation and subsequently downregulation of the transcription and activity of a key anti-ferroptosis enzyme glutathione peroxidase 4 (GPX4), thereby elevating ROS and ultimately triggering ferroptosis. Strikingly, targeting MTCH1 in combination with Sorafenib effectively and synergistically inhibited the growth of cervical cancer in a nude mouse xenograft model by actively inducing ferroptosis. In conclusion, these findings enriched our understanding of the mechanisms of MMF in which MTCH1 governed ferroptosis though retrograde signaling to FoxO1-GPX4 axis, and provided a potential therapeutic target for treating cervical cancer.


Assuntos
Ferroptose , Neoplasias do Colo do Útero , Feminino , Camundongos , Animais , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/fisiologia , Proteínas de Membrana/farmacologia , Proteínas Mitocondriais
4.
J Colloid Interface Sci ; 645: 210-218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37149995

RESUMO

Neuronal damage caused by ß-amyloid (Aß) aggregates and excess reactive oxygen species (ROS) is a crucial pathogenic event in Alzheimer's disease (AD). However, current Aß-targeting RNA interference (RNAi) treatments have shown limited therapeutic efficacy due to ineffective intracerebral siRNA delivery and overlooked crosstalk between excess ROS and Aß aggregates in the brain. Herein, a ROS-responsive nanomodulator (NM/CM) was developed for the combinational treatment of RNAi and ROS elimination for AD. NM/CM was coated with 4T1 cell membranes, which endowed NM/CM with the capability to cross blood-brain barrier (BBB). After being internalized by neural cells, NM/CM releases curcumin (Cur) and siIFITM3 spontaneously into the cytoplasm. The released Cur can eliminate ROS, protecting neurons from oxidative damage and reducing the production of Aß induced by ROS-related neuroinflammation. The released siIFITM3 can downregulate the expression of interferon-induced transmembrane protein 3 (IFITM3), thereby reducing the abnormal Aß production mediated by IFITM3. As a result, NM/CM remarkably alleviated ROS- and Aß aggregate-induced neurotoxicity in vitro, showing significant neuroprotective effects. This work demonstrates the potential of NM/CM in the development of novel and effective AD combination therapies.


Assuntos
Doença de Alzheimer , Curcumina , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides , Estresse Oxidativo , Barreira Hematoencefálica , Curcumina/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia , Proteínas de Ligação a RNA/uso terapêutico
5.
Biochem Biophys Res Commun ; 658: 55-61, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37023615

RESUMO

Otopetrins (Otop1-Otop3) belong to a newly identified family of proton (H+) channels activated by extracellular acidification. Here, we found that Zn2+ activates the mouse Otop3 (mOtop3) proton channels by using electrophysiological patch-clamp techniques. In mOtop3-expressing human embryonic kidney HEK293T cells, a biphasic inward mOtop3 H+ current comprising a fast transient current followed by a sustained current was observed upon extracellular acidification at pH 5.0. No significant activation of the mOtop3 channel was observed at pH 6.5 and 7.4, but interestingly, Zn2+ dose-dependently induced a sustained activation of mOtop3 under these pH conditions. Increasing the Zn2+ concentration had no effect on the reversal potential of the channel currents, suggesting that Zn2+ does not permeate through the mOtop3. The activation of the mOtop3 channel was specific to Zn2+ among divalent metal cations. Our findings reveal a novel modulatory mechanism of mOtop3 proton channels by Zn2+.


Assuntos
Prótons , Zinco , Animais , Camundongos , Humanos , Concentração de Íons de Hidrogênio , Células HEK293 , Potenciais da Membrana/fisiologia , Cátions Bivalentes , Zinco/farmacologia , Proteínas de Membrana/farmacologia
6.
Food Funct ; 14(5): 2374-2384, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779533

RESUMO

Sanghuangporus baumii, an edible fungus rich in heteropolysaccharides, has been found to have some anti-cervical cancer effects. In the current study, the effects of an aqueous extract of S. baumii on cervical cancer were investigated in a U14 cervical carcinoma cell implanted female Kunming mouse model. An aqueous extract of S. baumii (SHWE) was administered to tumor-bearing mice by gavage for 21 days. SHWE treatment significantly inhibited tumor growth by 67.4% at a dose of 400 mg per kg bodyweight. Transcriptomic results showed that the expression of key genes GABARAP, VMP1, VAMP8 and STX17 which are involved in the autophagy pathway was regulated after SHWE treatment, suggesting that SHWE may induce autophagy in tumors. The results were further confirmed by measuring the LC3II/LC3I ratio using western blotting. Moreover, some differentially expressed genes were involved in the insulin signaling pathway, implying that SHWE induced autophagy by disturbing glucose uptake and utilization in tumors. The analysis of the gut microbiota indicated that SHWE treatment stimulated the proliferation of Akkermansia, a well-known probiotic that presented benefits in metabolic regulation and cancer therapy. In conclusion, SHWE administration modified the gut microbiota, disturbed the glucose metabolism and induced autophagy in tumors, and then inhibited the development of cervical carcinoma in vivo.


Assuntos
Basidiomycota , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Transdução de Sinais , Proliferação de Células , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Autofagia , Apoptose , Linhagem Celular Tumoral , Proteínas de Membrana/farmacologia
7.
Gen Thorac Cardiovasc Surg ; 71(5): 280-290, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36008747

RESUMO

OBJECTIVES: Doxorubicin is a type of effective antitumor drug but can contribute to cardiomyocyte injuries. We aimed to dissect the mechanism of the HMOX1/CTGF axis in DOX-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis. METHODS: Bioinformatics analysis was conducted to retrieve differentially expressed genes in a DOX-induced mouse model. Mouse cardiomyocytes, HL-1 cells, were induced with l µM DOX, after which gain- or loss-of-function assays were applied. CCK-8, fluorescent probe assay, flow cytometry, and corresponding kits were employed to detect cell viability, ROS levels, mitochondrial membrane potential and cell apoptosis, and GSH and Fe2+ contents, respectively. qRT-PCR or Western blot assay was adopted to test HMOX1, CTGF, BCL-2, Caspase3, Cleaved-Caspase3, and GPX4 expression. RESULTS: Bioinformatics analysis showed that HMOX1 and CTGF were highly expressed in DOX-induced mice and correlated with each other. Also, HMOX1 and CTGF expression was high in HL-1 cells after DOX treatment, along with an obvious decrease in cell viability and GSH and GPX4 expression, an increase in ROS levels, apoptosis, and Fe2+ contents, and mitochondrial membrane potential dysfunction or loss. HMOX1 or CTGF silencing diminished cell apoptosis, Cleaved-Caspase3 expression, Fe2+ contents, and ROS levels, enhanced cell viability and the expression of GSH, GPX4, and BCL-2, and recovered mitochondrial membrane potential in DOX-induced HL-1 cells. Nevertheless, the effects of HMOX1 silencing on the viability, apoptosis, ferroptosis, and mitochondrial dysfunction of DOX-induced HL-1 cells were counteracted by CTGF overexpression. CONCLUSIONS: In conclusion, HMOX1 silencing decreased CTGF expression to alleviate DOX-induced injury, mitochondrial dysfunction, and ferroptosis of mouse cardiomyocytes.


Assuntos
Ferroptose , Camundongos , Animais , Ferroptose/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Mitocôndrias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia
8.
Chin J Integr Med ; 29(2): 170-178, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36484920

RESUMO

OBJECTIVE: To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat. METHODS: Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling. RESULTS: BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH. CONCLUSION: BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.


Assuntos
Terapia por Acupuntura , Sangria , Animais , Ratos , Altitude , Apoptose , Autofagia , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Estresse Oxidativo , Ratos Sprague-Dawley
9.
J Food Biochem ; 46(12): e14397, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069470

RESUMO

In this study, we consider the effect of treadmill exercise training, green tea extract, and combination of exercise training with green tea extract, in aging rat cardiac myocytes apoptosis markers (i.e., HIF-1α, BNIP3, Bax, IGFBP3, Bcl-2, caspase-3, MDA, GPx, Bax/Bcl-2 ratio, and hematoxylin and eosin). Twenty-four rats (male, Wistar) were divided into four groups: (I) control (n = 6), (II) green tea extract (n = 6), (III) exercise (n = 6), and (IV) exercise + green tea extract (n = 6). Exercise groups performed 12 weeks of running on a rodent treadmill at 17-27 m.min-1 (60-75% vo2peak) for 5 days per week. Green tea extract involved 300 mg.kg-1 , 5 days per week for 12 weeks. After being euthanized, the blood and heart were collected for glutathione peroxidase (GPx) activity, malondialdehyde (MDA), HIF-1α, BNIP3, insulin-like growth factor-binding protein-3 (IGFBP3), Bax, Bcl-2, caspase-3, Bax/Bcl-2 ratio, and hematoxylin and eosin level measurements. Compared to control, the ANOVA demonstrated significant effects of green tea extract (F = 14.646 to 32.453, p = .009 to .001, η = 0.295 to 0.715) and exercise training (F = 9.213 to 133.828, p = .007 to .001, η = 0.315 to η = 0.870) on HIF-1a, BNIP3, Bax, IGFBP3, Bcl-2, caspase-3, MDA, GPx, and Bax/Bcl-2 ratio. However, the combination of green tea extract and exercise had no effect on the aforementioned apoptosis markers when compared to isolated green tea extract or isolated exercise (F = 0.002 to 4.068, p = .057 to .968, and η = 0.001 to 0.169). PRACTICAL APPLICATIONS: Isolated exercise training and green tea extract may provide a cardioprotective effect on aging-induced apoptosis through the downregulation of HIF-1α, BNIP3, and IGFBP3 in the heart muscle. However, further research is needed to clarify the effects of combining exercise and green tea.


Assuntos
Apoptose , Miócitos Cardíacos , Animais , Masculino , Ratos , Envelhecimento , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar
10.
ACS Chem Biol ; 17(8): 2109-2120, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861660

RESUMO

Interferon-induced transmembrane proteins (IFITM1, 2, and 3) are important antiviral proteins that are active against many viruses, including influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV), and severe acute respiratory syndrome coronavirus (SARS-CoV). IFITM proteins exhibit specificity in activity, but their distinct mechanisms of action and regulation are unclear. Since S-palmitoylation and cholesterol homeostasis are crucial for viral infections, we investigated IFITM interactions with cholesterol by photoaffinity cross-linking in mammalian cells along with molecular dynamic simulations and nuclear magnetic resonance analysis in vitro. These studies suggest that cholesterol can directly interact with S-palmitoylated IFITMs in cells and alter the conformation of IFITMs in membrane bilayers. Notably, we discovered that the S-palmitoylation levels regulate differential IFITM protein interactions with cholesterol in mammalian cells and specificity of antiviral activity toward IAV, SARS-CoV-2, and EBOV. Our studies suggest that modulation of IFITM S-palmitoylation levels and cholesterol interaction influence host susceptibility to different viruses.


Assuntos
Antivirais , Lipoilação , Proteínas de Membrana , Esteróis , Animais , Antivirais/farmacologia , Colesterol/metabolismo , Vírus da Influenza A , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , SARS-CoV-2 , Esteróis/metabolismo , Zika virus
11.
J Mater Chem B ; 10(30): 5733-5742, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35822923

RESUMO

Diabetic wounds remain a major contributor to disability worldwide due to their difficulty of healing, and their primary etiologic factor involves impaired cell membrane repair. Additionally, ideal wound repair should prevent excessive scar formation from affecting tissue function following reconstruction. Therefore, the development of a therapeutic strategy for promoting rapid wound healing and reduced scar formation is urgently needed. In this study, a remote light-controlled thermosensitive nanoformulation was developed, which integrated the photothermal conversion performance of a photosensitizer and cell membrane repair protein (rhMG53). The nanoformulation not only protected rhMG53 from being degraded by proteases at the lesion site but also efficiently released this protein through photothermal stimulation. The nanoformulation remained stable at physiological temperatures and released approximately 80% rhMG53 at 45 °C. More protein was effectively delivered to tissue cells, achieving synergistic therapy with photothermal and rhMG53. By utilizing this approach, increased wound closure rate, reduced extent of cell membrane damage and inflammation, and improved cell function were observed in diabetic wounds. More importantly, rhMG53@TSCL3 treatment inhibited excessive skin fibrosis and angiogenesis, indicating a reduction in scar formation. Collectively, this work reveals a promising strategy for high-quality wound repair and provides a new route for rapid scarless wound healing.


Assuntos
Cicatriz , Proteínas de Membrana , Membrana Celular/metabolismo , Cicatriz/metabolismo , Humanos , Proteínas de Membrana/farmacologia , Pele/metabolismo , Cicatrização
12.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806412

RESUMO

The abuse or misuse of antibiotics has caused the emergence of extensively drug-resistant (XDR) bacteria, rendering most antibiotics ineffective and increasing the mortality rate of patients with bacteremia or sepsis. Antimicrobial peptides (AMPs) are proposed to overcome this problem; however, many AMPs have attenuated antimicrobial activities with hemolytic toxicity in blood. Recently, AMPR-11 and its optimized derivative, AMPR-22, were reported to be potential candidates for the treatment of sepsis with a broad spectrum of antimicrobial activity and low hemolytic toxicity. Here, we performed molecular dynamics (MD) simulations to clarify the mechanism of lower hemolytic toxicity and higher efficacy of AMPR-22 at an atomic level. We found four polar residues in AMPR-11 bound to a model mimicking the bacterial inner/outer membranes preferentially over eukaryotic plasma membrane. AMPR-22 whose polar residues were replaced by lysine showed a 2-fold enhanced binding affinity to the bacterial membrane by interacting with bacterial specific lipids (lipid A or cardiolipin) via hydrogen bonds. The MD simulations were confirmed experimentally in models that partially mimic bacteremia conditions in vitro and ex vivo. The present study demonstrates why AMPR-22 showed low hemolytic toxicity and this approach using an MD simulation would be helpful in the development of AMPs.


Assuntos
Bacteriemia , Proteínas de Membrana , Proteínas Mitocondriais , Simulação de Dinâmica Molecular , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Bacteriemia/metabolismo , Bactérias , Membrana Celular/metabolismo , Hemólise , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/farmacologia , Testes de Sensibilidade Microbiana , Proteínas Mitocondriais/química , Proteínas Mitocondriais/farmacologia
13.
Nat Mater ; 21(6): 710-720, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606429

RESUMO

Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia , Lipídeos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
14.
Acta Biomater ; 147: 270-286, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595202

RESUMO

A natural killer (NK)-92 cell membrane-camouflaged mesoporous MnO2-enveloped Au@Pd (Au@Pd@MnO2) nanoparticles (denoted as APMN NPs)-based versatile biomimetic theranostic nanoplatform was developed for magnetic resonance (MR) imaging-guided multimodal synergistic antitumor treatments. In this core-shell nanostructure, an Au@Pd core induced near-infrared (NIR)-activatable hyperthermal effects and nanozyme catalytic activity, while a mesoporous MnO2 shell not only afforded a high drug-loading capability, tumor microenvironment (TME)-triggered MR imaging and drug release, but also endowed catalase-, glutathione peroxidase-, and Fenton-like activities. Furthermore, the NK-92 cell membrane camouflaging endowed the NPs with enhanced tumor-targeting capability, immune escape function, and membrane protein-mediated tumoral uptake property. The doxorubicin-loaded APMN (D-APMN) NPs exhibited TME-responsive drug release properties. Furthermore, the cellular uptake, in vivo MR imaging, and NIR thermal imaging confirmed the active tumor-targeting capability and TME-responsive MR imaging property of these biomimetic NPs. An antitumor efficacy test, histological analyses, and blood biochemical profiles suggested that the developed D-APMN NPs possessed a high antitumor activity and biosafety in tumor-bearing nude mice. Therefore, the developed APMN NPs held great potential as an intelligent and comprehensive theranostic nanoplatform for tumor-specific bioimaging and TME-responsive multimodality treatment based on photothermal therapy, chemodynamic therapy, and chemotherapy. STATEMENT OF SIGNIFICANCE: Exploring intelligent and comprehensive theranostic nanoplatforms to integrate tumor-specific bioimaging and TME-responsive multimodal therapy effectively is a challenge. Herein, we successfully developed a new kind of NK-92 cell membrane-camouflaged mesoporous MnO2-enveloped Au@Pd nanoparticles (APMN NPs)-based versatile biomimetic theranostic nanoplatform for the potential MR imaging-guided multimodal synergistic antitumor treatments. These NPs could integrate unique structural, optical, multiple-catalytic, paramagnetic, and biological merits of NK-92 cell membrane, Au@Pd cores and mesoporous MnO2 shell in a single nanoplatform. The NK-92 cell membrane camouflaging endowed the NPs with enhanced tumor-targeting capability, immune escape function, and membrane protein-mediated tumoral uptake property. The new information obtained from this study may be beneficial to promote the development of novel TME-responsive versatile "Trojan horse" theranostic nanoplatforms for efficient MR imaging-guided multimodal synergistic treatment.


Assuntos
Nanopartículas , Neoplasias , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Imageamento por Ressonância Magnética , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Óxidos/química , Medicina de Precisão , Nanomedicina Teranóstica , Microambiente Tumoral
15.
Toxicol Appl Pharmacol ; 445: 116024, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439480

RESUMO

Bulleyaconitine A (BLA), a toxic Aconitum alkaloid, is a potent analgesic that is clinically applied to treat rheumatoid arthritis, osteoarthritis and lumbosacral pain. BLA-related adverse reactions occur frequently, but whether the underlying mechanism is related to its metabolic interplay with drug-metabolizing enzymes remains unclear. This study aimed to elucidate the metabolic characteristics of BLA and its affinity action and mechanism to drug-metabolizing enzymes to reveal whether BLA-related adverse reactions are modulated by enzymes. After incubation with human liver microsomes and recombinant human cytochrome P450 enzymes, we found that BLA was predominantly metabolized by CYP3A, in which CYP3A4 had an almost absolute advantage. In vitro, the CYP3A4 inhibitor ketoconazole noticeably suppressed the metabolism of BLA. In vivo, the AUC0-∞ values, cardiotoxicity and neurotoxicity of BLA in Cyp3a-inhibited mice were all obviously enhanced (P < 0.05) compared to those in normal mice. In the enzyme kinetics study, BLA was found to be a sensitive substrate of CYP3A4, and its characteristics were consistent with substrate inhibition (Km = 39.36 ± 10.47 µmol/L, Ks = 83.42 ± 19.65 µmol/L). BLA was further identified to be a competitive inhibitor of CYP3A4 with Ki = 53.64 µmol/L, since the intrinsic clearance (CLint) of midazolam, a selective CYP3A4 substrate, decreased significantly (P < 0.05) when incubated with BLA together in mouse liver microsomes. Overall, BLA is a sensitive substrate and competitive inhibitor of CYP3A4, and clinical adverse reactions of BLA may mechanistically related to the CYP3A4-mediated drug-drug interactions.


Assuntos
Aconitina , Citocromo P-450 CYP3A , Proteínas de Membrana , Microssomos Hepáticos , Proteínas de Saccharomyces cerevisiae , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cetoconazol/farmacologia , Proteínas de Membrana/farmacologia , Camundongos , Microssomos Hepáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacologia
16.
Drugs ; 82(5): 533-557, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294769

RESUMO

Sulopenem (formerly known as CP-70,429, and CP-65,207 when a component of a racemic mixture with its R isomer) is an intravenous and oral penem that possesses in vitro activity against fluoroquinolone-resistant, extended spectrum ß-lactamases (ESBL)-producing, multidrug-resistant (MDR) Enterobacterales. Sulopenem is being developed to treat patients with uncomplicated and complicated urinary tract infections (UTIs) as well as intra-abdominal infections. This review will focus mainly on its use in UTIs. The chemical structure of sulopenem shares properties of penicillins, cephalosporins, and carbapenems. Sulopenem is available as an oral prodrug formulation, sulopenem etzadroxil, which is hydrolyzed by intestinal esterases, resulting in active sulopenem. In early studies, the S isomer of CP-65,207, later developed as sulopenem, demonstrated greater absorption, higher drug concentrations in the urine, and increased stability against the renal enzyme dehydropeptidase-1 compared with the R isomer, which set the stage for its further development as a UTI antimicrobial. Sulopenem is active against both Gram-negative and Gram-positive microorganisms. Sulopenem's ß-lactam ring alkylates the serine residues of penicillin-binding protein (PBP), which inhibits peptidoglycan cross-linking. Due to its ionization and low molecular weight, sulopenem passes through outer membrane proteins to reach PBPs of Gram-negative bacteria. While sulopenem activity is unaffected by many ß-lactamases, resistance arises from alterations in PBPs (e.g., methicillin-resistant Staphylococcus aureus [MRSA]), expression of carbapenemases (e.g., carbapenemase-producing Enterobacterales and in Stenotrophomonas maltophilia), reduction in the expression of outer membrane proteins (e.g., some Klebsiella spp.), and the presence of efflux pumps (e.g., MexAB-OprM in Pseudomonas aeruginosa), or a combination of these mechanisms. In vitro studies have reported that sulopenem demonstrates greater activity than meropenem and ertapenem against Enterococcus faecalis, Listeria monocytogenes, methicillin-susceptible S. aureus (MSSA), and Staphylococcus epidermidis, as well as similar activity to carbapenems against Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes. With some exceptions, sulopenem activity against Gram-negative aerobes was less than ertapenem and meropenem but greater than imipenem. Sulopenem activity against Escherichia coli carrying ESBL, CTX-M, or Amp-C enzymes, or demonstrating MDR phenotypes, as well as against ESBL-producing Klebsiella pneumoniae, was nearly identical to ertapenem and meropenem and greater than imipenem. Sulopenem exhibited identical or slightly greater activity than imipenem against many Gram-positive and Gram-negative anaerobes, including Bacteroides fragilis. The pharmacokinetics of intravenous sulopenem appear similar to carbapenems such as imipenem-cilastatin, meropenem, and doripenem. In healthy subjects, reported volumes of distribution (Vd) ranged from 15.8 to 27.6 L, total drug clearances (CLT) of 18.9-24.9 L/h, protein binding of approximately 10%, and elimination half-lives (t½) of 0.88-1.03 h. The estimated renal clearance (CLR) of sulopenem is 8.0-10.6 L/h, with 35.5% ± 6.7% of a 1000 mg dose recovered unchanged in the urine. An ester prodrug, sulopenem etzadroxil, has been developed for oral administration. Initial investigations reported a variable oral bioavailability of 20-34% under fasted conditions, however subsequent work showed that bioavailability is significantly improved by administering sulopenem with food to increase its oral absorption or with probenecid to reduce its renal tubular secretion. Food consumption increases the area under the curve (AUC) of oral sulopenem (500 mg twice daily) by 23.6% when administered alone and 62% when administered with 500 mg of probenecid. Like carbapenems, sulopenem demonstrates bactericidal activity that is associated with the percentage of time that free concentrations exceed the MIC (%f T > MIC). In animal models, bacteriostasis was associated with %f T > MICs ranging from 8.6 to 17%, whereas 2-log10 kill was seen at values ranging from 12 to 28%. No pharmacodynamic targets have been documented for suppression of resistance. Sulopenem concentrations in urine are variable, ranging from 21.8 to 420.0 mg/L (median 84.4 mg/L) in fasted subjects and 28.8 to 609.0 mg/L (median 87.3 mg/L) in those who were fed. Sulopenem has been compared with carbapenems and cephalosporins in guinea pig and murine systemic and lung infection animal models. Studied pathogens included Acinetobacter calcoaceticus, B. fragilis, Citrobacter freundii, Enterobacter cloacae, E. coli, K. pneumoniae, Proteus vulgaris, and Serratia marcescens. These studies reported that overall, sulopenem was non-inferior to carbapenems but appeared to be superior to cephalosporins. A phase III clinical trial (SURE-1) reported that sulopenem was not non-inferior to ciprofloxacin in women infected with fluoroquinolone-susceptible pathogens, due to a higher rate of asymptomatic bacteriuria in sulopenem-treated patients at the test-of-cure visit. However, the researchers reported superiority of sulopenem etzadroxil/probenecid over ciprofloxacin for the treatment of uncomplicated UTIs in women infected with fluoroquinolone/non-susceptible pathogens, and non-inferiority in all patients with a positive urine culture. A phase III clinical trial (SURE-2) compared intravenous sulopenem followed by oral sulopenem etzadroxil/probenecid with ertapenem in the treatment of complicated UTIs. No difference in overall success was noted at the end of therapy. However, intravenous sulopenem followed by oral sulopenem etzadroxil was not non-inferior to ertapenem followed by oral stepdown therapy in overall success at test-of-cure due to a higher rate of asymptomatic bacteriuria in the sulopenem arm. After a meeting with the US FDA, Iterum stated that they are currently evaluating the optimal design for an additional phase III uncomplicated UTI study to be conducted prior to the potential resubmission of the New Drug Application (NDA). It is unclear at this time whether Iterum intends to apply for EMA or Japanese regulatory approval. The safety and tolerability of sulopenem has been reported in various phase I pharmacokinetic studies and phase III clinical trials. Sulopenem (intravenous and oral) appears to be well tolerated in healthy subjects, with and without the coadministration of probenecid, with few serious drug-related treatment-emergent adverse events (TEAEs) reported to date. Reported TEAEs affecting ≥1% of patients were (from most to least common) diarrhea, nausea, headache, vomiting and dizziness. Discontinuation rates were low and were not different than comparator agents. Sulopenem administered orally and/or intravenously represents a potentially well tolerated and effective option for treating uncomplicated and complicated UTIs, especially in patients with documented or highly suspected antimicrobial pathogens to commonly used agents (e.g. fluoroquinolone-resistant E. coli), and in patients with documented microbiological or clinical failure or patients who demonstrate intolerance/adverse effects to first-line agents. This agent will likely be used orally in the outpatient setting, and intravenously followed by oral stepdown in the hospital setting. Sulopenem also allows for oral stepdown therapy in the hospital setting from intravenous non-sulopenem therapy. More clinical data are required to fully assess the clinical efficacy and safety of sulopenem, especially in patients with complicated UTIs caused by resistant pathogens such as ESBL-producing, Amp-C, MDR E. coli. Antimicrobial stewardship programs will need to create guidelines for when this oral and intravenous penem should be used.


Assuntos
Bacteriúria , Staphylococcus aureus Resistente à Meticilina , Pró-Fármacos , Infecções Urinárias , Animais , Feminino , Cobaias , Humanos , Masculino , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriúria/induzido quimicamente , Bacteriúria/tratamento farmacológico , beta-Lactamases/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Ciprofloxacina/farmacologia , Ertapenem , Escherichia coli , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas , Imipenem/farmacologia , Lactamas , Proteínas de Membrana/farmacologia , Meropeném/farmacologia , Probenecid/farmacologia , Pró-Fármacos/farmacologia , Staphylococcus aureus , Infecções Urinárias/tratamento farmacológico
17.
Nat Commun ; 13(1): 608, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105890

RESUMO

In obesity, signaling through the IRE1 arm of the unfolded protein response exerts both protective and harmful effects. Overexpression of the IRE1-regulated transcription factor XBP1s in liver or fat protects against obesity-linked metabolic deterioration. However, hyperactivation of IRE1 engages regulated IRE1-dependent decay (RIDD) and TRAF2/JNK pro-inflammatory signaling, which accelerate metabolic dysfunction. These pathologic IRE1-regulated processes have hindered efforts to pharmacologically harness the protective benefits of IRE1/XBP1s signaling in obesity-linked conditions. Here, we report the effects of a XBP1s-selective pharmacological IRE1 activator, IXA4, in diet-induced obese (DIO) mice. IXA4 transiently activates protective IRE1/XBP1s signaling in liver without inducing RIDD or TRAF2/JNK signaling. IXA4 treatment improves systemic glucose metabolism and liver insulin action through IRE1-dependent remodeling of the hepatic transcriptome that reduces glucose production and steatosis. IXA4-stimulated IRE1 activation also enhances pancreatic function. Our findings indicate that systemic, transient activation of IRE1/XBP1s signaling engenders multi-tissue benefits that integrate to mitigate obesity-driven metabolic dysfunction.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Obesos , Medicina Molecular , Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética
18.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216228

RESUMO

Currently, the mechanism of progression of atopic dermatitis (AD) is not well understood because there is no physiologically appropriate disease model in terms of disease complexity and multifactoriality. Type 2 inflammation, mediated by interleukin (IL)-4 and IL-13, plays an important role in AD. In this study, full-thickness human skin equivalents consisting of human-derived cells were fabricated from pumpless microfluidic chips and stimulated with IL-4 and IL-13. The morphological properties, gene expression, cytokine secretion and protein expression of the stimulated human skin equivalent (HSE) epidermis were investigated. The results showed epidermal and spongy formations similar to those observed in lesions in AD, and decreased expression of barrier-related filaggrin, loricrin and involucrin genes and proteins induced by IL-4Rα signaling. In addition, we induced the expression of carbonic anhydrase II (CAII), a gene specifically expressed in the epidermis of patients with AD. Thus, AD human skin equivalents can be used to mimic the key pathological features of atopic dermatitis, overcoming the limitations of existing studies that rely solely on mouse models and have been unable to translate their effects to humans. Our results will be useful for future research on the development of therapeutic agents for atopic dermatitis.


Assuntos
Dermatite Atópica/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Pele/metabolismo , Animais , Dermatite Atópica/tratamento farmacológico , Eczema/tratamento farmacológico , Eczema/metabolismo , Eczema/patologia , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Dispositivos Lab-On-A-Chip , Proteínas de Membrana/farmacologia , Ratos , Pele/efeitos dos fármacos , Pele/patologia
19.
Biomed Pharmacother ; 147: 112649, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051858

RESUMO

Ankyrin repeat domain 22 (ANKRD22) is a nuclear-encoded mitochondrial membrane protein that is highly expressed in normal gastric mucosal epithelial cells and activated macrophages. As a regulator of mitochondrial Ca2+, ANKRD22 could help repair damaged gastric mucosa by promoting the mobilization of LGR5+ gastric epithelial cells via the upregulation of Wnt/ß-catenin pathway activity in a mouse model. Furthermore, the inhibition of ANKRD22 alleviated the macrophage activation-mediated inflammatory response by reducing the phosphorylation of nuclear factor of activated T cells (NFAT). ANKRD22 plays a significant role in the repair of gastric mucosal damage and may become an ideal novel target for the treatment of gastric mucosal injury. However, there is no systematic introduction to ANKRD22 targeting. Therefore, we wrote this review to elaborate the functional mechanism of ANKRD22 in gastric mucosal injury and to analyze its potential application value in clinical therapy.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Mucosa Gástrica/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Animais , Biomarcadores , Canais de Cálcio/efeitos dos fármacos , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
20.
Circ Heart Fail ; 15(1): e008574, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923829

RESUMO

BACKGROUND: Right ventricular dysfunction (RVD) is the leading cause of death in pulmonary arterial hypertension (PAH), but no RV-specific therapy exists. We showed microtubule-mediated junctophilin-2 dysregulation (MT-JPH2 pathway) causes t-tubule disruption and RVD in rodent PAH, but the druggable regulators of this critical pathway are unknown. GP130 (glycoprotein 130) activation induces cardiomyocyte microtubule remodeling in vitro; however, the effects of GP130 signaling on the MT-JPH2 pathway and RVD resulting from PAH are undefined. METHODS: Immunoblots quantified protein abundance, quantitative proteomics defined RV microtubule-interacting proteins (MT-interactome), metabolomics evaluated the RV metabolic signature, and transmission electron microscopy assessed RV cardiomyocyte mitochondrial morphology in control, monocrotaline, and monocrotaline-SC-144 (GP130 antagonist) rats. Echocardiography and pressure-volume loops defined the effects of SC-144 on RV-pulmonary artery coupling in monocrotaline rats (8-16 rats per group). In 73 patients with PAH, the relationship between interleukin-6, a GP130 ligand, and RVD was evaluated. RESULTS: SC-144 decreased GP130 activation, which normalized MT-JPH2 protein expression and t-tubule structure in the monocrotaline RV. Proteomics analysis revealed SC-144 restored RV MT-interactome regulation. Ingenuity pathway analysis of dysregulated MT-interacting proteins identified a link between microtubules and mitochondrial function. Specifically, SC-144 prevented dysregulation of electron transport chain, Krebs cycle, and the fatty acid oxidation pathway proteins. Metabolomics profiling suggested SC-144 reduced glycolytic dependence, glutaminolysis induction, and enhanced fatty acid metabolism. Transmission electron microscopy and immunoblots indicated increased mitochondrial fission in the monocrotaline RV, which SC-144 mitigated. GP130 antagonism reduced RV hypertrophy and fibrosis and augmented RV-pulmonary artery coupling without altering PAH severity. In patients with PAH, higher interleukin-6 levels were associated with more severe RVD (RV fractional area change 23±12% versus 30±10%, P=0.002). CONCLUSIONS: GP130 antagonism reduces MT-JPH2 dysregulation, corrects metabolic derangements in the RV, and improves RVD in monocrotaline rats.


Assuntos
Receptor gp130 de Citocina/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Hipertrofia Ventricular Direita/tratamento farmacológico , Proteínas de Membrana/farmacologia , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Receptor gp130 de Citocina/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA